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Abstract

We study the online decision problem where
the set of available actions varies over time,
also called the sleeping experts problem. We
consider the setting where the performance
comparison is made with respect to the best
ordering of actions in hindsight. In this pa-
per, both the payoff function and the avail-
ability of actions is adversarial. Kleinberg et
al. (2008) gave a computationally efficient
no-regret algorithm in the setting where pay-
offs are stochastic. Kanade et al. (2009) gave
an efficient no-regret algorithm in the setting
where action availability is stochastic.

However, the question of whether there exists
a computationally efficient no-regret algo-
rithm in the adversarial setting was posed as
an open problem by Kleinberg et al. (2008).
We show that such an algorithm would im-
ply an algorithm for PAC learning DNF, a
long standing important open problem. We
believe that such computational limitations,
especially for non-stochastic contextual ex-
perts problems, are likely to exist and study-
ing these will point to the (correct) semi-
stochasticity assumptions that allow design-
ing no-regret algorithms.

1. Introduction

In online decision problems, a decision-maker must
choose one of n possible actions, in each of the total
T rounds. The decision-maker receives a payoff in the
range [0, 1]. In the full information or expert setting,
at the end of each round, the decision-maker sees the
payoff corresponding to each of the possible actions. In
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the bandit setting, she only observes the reward of the
action that she chose. The goal of the decision maker
is to maximize her total payoff across T rounds, or as
is common in the non-stochastic setting, to minimize
her regret with respect to a class of strategies. The re-
gret of the decision-maker is defined as the difference
between the payoff she would have received by follow-
ing the best strategy in hindsight from the class and
the payoff that she actually received.

In this paper, we focus on the so-called sleeping experts
problem. In this problem, the set of actions available
to the decision-maker at round t is a subset St of n
possible actions. The class of strategies we compare
against is the set of rankings over the n total actions.
Each ranking induces a simple strategy for the online
decision problem: pick the highest-ranked available ac-
tion. As a motivating example, consider the problem
of choosing an advertisement to display alongside a
search query. Of all the ads that match the particu-
lar keyword, only a subset might be actually available
for displaying because of budget, geographical or other
constraints. In this case, we would like the decision-
making algorithm to compare well against the best (in
hindsight) hypothetical ranking on the ads.

Our work focuses on the fully non-stochastic setting,
where both the set of available actions and their
payoffs are decided by an adversary1. In this pa-
per, we consider the case of an oblivious adversary,
i.e. one that does not observe the actual (random)
choices made by the decision-maker. Since, our re-
sults show computational difficulties in designing effi-
cient no-regret algorithms, they are equally applicable
to the more challenging case of an adaptive adversary.
An algorithm that selects an action at at time step t is
efficient, if it makes its choice (possibly using history)
in time that is polynomial in n. An algorithm is said to

1No-regret algorithms are known for the case when ei-
ther the payoffs or action availabilities are stochastic; these
are discussed in the related works section.
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be a no-regret algorithm if its regret is O(poly(n)T 1−δ)
for some constant δ > 0. An informal statement of our
main result is:

Theorem 1. If there exists a computationally effi-
cient no-regret algorithm for the sleeping experts prob-
lem (with respect to ranking strategies), then the class
of polynomial size DNFs is PAC-learnable under arbi-
trary distributions.

In contrast to the above result, if computational effi-
ciency is not a concern, it is easy to see that the Hedge
algorithm (Freund & Schapire, 1995) achieves regret
O(
√
n log(n)T ), by treating each of the n! rankings

as an expert. This observation was made by Klein-
berg et al. (2008), who also show that when the class
of online algorithms is restricted to those that select
actions by sampling over rankings and without observ-
ing the set of available actions St, there is no efficient
no-regret algorithm unless RP = NP. However, this
is a severe restriction and whether there exists an effi-
cient no-regret algorithm without such restrictions was
posed by Kleinberg et al. as an open question. Our
result shows that such an algorithm would imply an
algorithm for PAC-learning DNFs under arbitrary dis-
tributions, a long standing important open problem.
In fact, the best known algorithm for PAC-learning

DNFs takes time 2Õ(n1/3) (Klivans & Servedio, 2001).

Contextual Experts Setting: We observe that the
sleeping experts problem may be regarded as a spe-
cial setting of the contextual experts problem, where
at each time step t, the context xt made available to
the decision-maker is the set of available (awake) ex-
perts. The contextual experts/bandit setting is partic-
ularly applicable to several practical on-line machine
learning tasks. Recently, a result by Beygelzimer et al.
(2011) showed that learning algorithms could be used
to design no-regret contextual experts algorithm in the
case when empirical risk minimization can be achieved.
Our paper shows a result in the opposite direction that
a contextual experts algorithm (if one exists) could be
used to solve a supervised learning problem, in our
case learning DNFs.

We note that under standard cryptographic assump-
tions it is easy to construct (possibly unnatural) con-
textual experts problems that do not have any com-
putationally efficient no-regret algorithms. Our re-
sult shows that a natural problem, the sleeping ex-
perts problem, is also at least as hard as a well-known
learning problem, PAC learning DNF expressions. We
believe that under strong non-stochastic assumptions,
i.e. an adversary decides the context and the payoffs,
contextual experts problems may be as hard as known
supervised learning problems. This insight may lead

to the (correct) semi-stochastic assumptions, as in the
case of sleeping experts, either the payoffs or action
availability being determined stochastically.

Our contributions: The proof of our main result
follows from the fact that online agnostic learning of
disjunctions reduces to the sleeping experts problem.
As far as we are aware, computational hardness as-
sumptions have not been used to show lower bounds
on regret in experts/bandits problems2. Lower bounds
in the literature are usually based on information the-
oretic arguments (such as predicting coin tosses). In
the sleeping experts setting, the information-theoretic
lower bound of Ω(

√
n log(n)T ) can indeed be achieved

if computational efficiency is not a concern.

The set of available experts may be thought of as
context information at each time step, and hence al-
lows for encoding learning problems (in our case ag-
nostic learning of disjunctions). We believe that such
techniques may be applicable to other contextual ex-
perts/bandits problems. When not in the contextual
experts/bandits setting, it is often possible to com-
pete against a class of exponentially many experts (cf.
(Cesa-Bianchi & Lugosi, 2006) Chap. 5).

Related Work: The most relevant related work to
ours is that of Kleinberg et al. (2008) and Kanade
et al. (2009). Kleinberg et al. showed that in the set-
ting where payoffs are stochastic (i.e. are drawn from
a fixed distribution on each round and independently
for each action) and action availability is adversarial,
there exists an efficient no-regret algorithm that is es-
sentially information-theoretically optimal. Kanade et
al. gave an efficient no-regret algorithm in the setting
when the payoffs are set by an oblivious adversary, but
the action availability is decided stochastically, i.e. a
subset S ⊆ [n] of available actions is drawn according
to a fixed distribution at each time step. In contrast,
our results in this paper show that an adversarial cou-
pling between action availability and payoffs makes the
problem much harder.

In earlier literature, different versions of the sleeping
experts problems have been considered by Freund et al.
(1997) and Blum & Mansour (2007). Our results are
not applicable to their settings, and in fact compu-
tationally efficient no-regret algorithms are known in
those settings.

Organization. In section 2, we formally define the
sleeping experts problem and the gambling problem.
Section 3 provides the relevant definitions of batch and

2In the case of online learning of concepts (such as linear
separators), such lower bounds have been shown before (see
e.g. (Shalev-Shwartz et al., 2010))
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online agnostic learning. Section 4 contains the main
reduction showing that the sleeping experts problem
is at least as hard as PAC learning DNF.

2. Setting and Notation

Let A = {a1, . . . , an} be the set of actions. Let T be
the total number of time steps for the online decision
problem. In the sleeping experts setting, at time step
t, a subset St ⊆ A of actions is available, from which
the decision-maker picks an action at ∈ St. Let pt :
St → [0, 1] be the payoff function, and for any action
a, let pt(a) denote the payoff associated with action a
at time step t. At the end of round t, the entire payoff
function pt is revealed to the decision-maker. The total
payoff of the decision-maker across T rounds is simply:

PDM =
T∑
t=1

pt(at)

When choosing an action at ∈ St, at time step T , the
decision-maker may use the history to guide her choice.
If the adversary cannot see any of the choices of the
decision-maker we say that the adversary is oblivious.
An adaptive adversary can see the past choices of the
decision-maker and may then decide the payoff func-
tion and action availability. In this paper, we only con-
sider the oblivious adversarial setting, since the hard-
ness of designing no-regret algorithms against oblivi-
ous adversaries also applies to the case of (stronger)
adaptive adversaries. Also, we only consider the full
information setting, since the bandit setting is strictly
harder.

The set of strategies that the decision-maker has to
compete against is defined by the set of rankings over
the actions. Let ΣA denote the set of all possible n!
rankings over the n total actions. Given a particular
ranking σ ∈ ΣA, the strategy is to play the highest
ranked available action according to σ. For subset S ⊆
A of available actions, let σ(S) ∈ A denote the action
in S which is ranked highest according to σ. Thus, the
payoff obtained by playing according to strategy σ is:

Pσ =

T∑
t=1

pt(σ(St))

The quantity of interest is the regret of the decision-
maker with respect to the class of strategies defined
by rankings. The regret is defined as the difference
between the payoff that would have been attained by
playing according to the best ranking strategy in hind-
sight and the actual payoff received by the decision
maker. Thus,

RegretDM = max
σ∈ΣA

Pσ − PDM

We say that an algorithm is no-regret, if by play-
ing according to the algorithm the decision-maker can
achieve regret O(p(n)T 1−δ), where p(n) is a polyno-
mial in n and δ ∈ (0, 1/2]. Furthermore, we say that
such an algorithm is computationally efficient, if at
each time step t, given the set St of available ac-
tions (and possibly using history), it selects an action
at ∈ St in time polynomial in n.

3. Agnostic Learning

In this section, we define online and batch agnostic
learning. Let X be an instance space and n be a
parameter than captures the representation size of X
(e.g. X = {0, 1}n or X = Rn).

Online Agnostic Learning. The definition of online
agnostic learning used here is slightly different to those
previously used in the literature (cf. (Ben-David et al.,
2009)), but is essentially equivalent. Our definition
simplifies the presentation of our results.

An online agnostic learning algorithm observes exam-
ples one at a time; at time step t it sees example xt,
makes a prediction ŷt ∈ {0, 1} (possibly using history)
and then observes yt. Let s = 〈(xt, yt)〉Tt=1 be a se-
quence of length T , where xt ∈ X and yt ∈ {0, 1}. We
consider the oblivious adversarial setting, where the
sequence s may be fixed by an adversary but is fixed
ahead of time, i.e. without observing the past pre-
dictions made by the online learning algorithm. We
define error of an online agnostic learning algorithm A
with respect to a sequence s = 〈(xt, yt)〉Tt=1 as:

errs(A) =
1

T

T∑
t=1

I(ŷt 6= yt)

where I is the indicator function. For any boolean
function f : X → {0, 1} we can define error of f with
respect to the sequence s = 〈(xt, yt)〉Tt=1 as,

errs(f) =
1

T

T∑
t=1

I(f(xt) 6= yt).

For a concept class C of boolean functions over X,
online agnostic learnability of C is defined as3:

Definition 2 (Online Agnostic Learning). We say
that a concept class C over X is online agnostically
learnable if there exists an online agnostic learning al-
gorithm A, that for all T , for all example sequences

3The definition assumes that the online algorithm is de-
terministic; one may instead also allow a randomized algo-
rithm that achieves low regret with high probability over
its random choices. But, the guarantee must hold with
respect to all sequences.
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s = 〈(xt, yt)〉Tt=1, makes predictions ŷ1, . . . , ŷT such
that,

errs(A) ≤ min
f∈C

errs(f) +O(p(n)/T ζ)

for some polynomial p(n) and ζ ∈ (0, 1/2]. Further-
more, the running time of A at each time step must
be polynomial in n. We say that A has regret bound
O(p(n)/T ζ).

Batch Agnostic Learning. We also give a defini-
tion of (batch) agnostic learning (cf. (Haussler, 1992),
(Kearns et al., 1994)). For a distribution D over
X × {0, 1} and any boolean function f : X → {0, 1}
define,

errD(f) = Pr
(x,y)∼D

[f(x) 6= y]

Definition 3 ((Batch) Agnostic Learning (Kearns
et al., 1994)). We say that a concept class C is (batch)
agnostically learnable, if there exists an efficient algo-
rithm that for every ε, δ > 0 and for every distribution
D over X × {0, 1}, with access to a random example
oracle from D, with probability at least 1− δ outputs a
hypothesis h such that,

errD(h) ≤ min
f∈C

errD(f) + ε

The running time of the algorithm is polynomial in
n, 1/ε, 1/δ and h is polynomially evaluatable. The
sample complexity of the algorithm is the number of
times it queries the example oracle.

In most learning settings, it is well-known that batch
learning is no harder than online learning. Theorem
4 follows more or less directly from (Littlestone, 1989;
Cesa-Bianchi et al., 2004), but we provide a proof in
Appendix A for completeness. Roughly speaking after
an online to batch conversion, the sample complexity
of the resulting batch algorithm is the number of time
steps required to make the regret O(ε).

Theorem 4. If a concept class C is online ag-
nostically learnable with regret bound O(p(n)/T ζ)
then it is (batch) agnostically learnable. Further-
more the sample complexity for (batch) agnostic
learning is O((p(n)/ε)1/ζ) + O(1/ε4 + log2(1/δ) +
(1/ζε2) log(n/εδ)).

4. Sleeping Experts Problem

In this section, we show that the sleeping experts prob-
lem is at least as hard as online agnostic learning of
disjunctions. Theorem 4 implies that the class of dis-
junctions is also (batch) agnostically learnable. It is

known that agnostic learning of disjunctions implies
PAC learning of DNF expressions (cf. (Kearns et al.,
1994; Kalai et al., 2009))4, thus proving Theorem 1.

Recall that in the sleeping experts setting we con-
sider, the action availability and payoff functions are
set by an oblivious adversary. First, we define the
notation used in this section. Let X = {0, 1}n
and let DISJ denote the class of disjunctions over
X. Let x = x1 · · ·xn ∈ X; for each bit xi we de-
fine two actions Oi (corresponding to xi = 1) and
Zi (corresponding to xi = 0). We define an addi-
tional action ⊥. Thus, the set of actions is A =
{⊥, O1, Z1, . . . , Oi, Zi, . . . , On, Zn}.

Suppose there exists an algorithm Alg for the sleeping
experts problem, that achieves regret O(p(n)T 1−δ) for
some polynomial p(n) and δ ∈ (0, 1/2]. We use Alg
to construct an online learning algorithm DISJ-Learn
(see Fig. 1) for online agnostic learning DISJ that has
average regret O(p(n)/T δ). The instance xt is used to
define the set of available actions at round t and the
label yt to define the payoffs.

Proposition 5. Suppose there exists an efficient al-
gorithm for the sleeping experts problem with regret
O(p(n)T 1−δ), then there exists an efficient online ag-
nostic algorithm for learning disjunctions with average
regret O(p(n)/T δ).

Proof. Let s = 〈(xt, yt)〉Tt=1 be any sequence of ex-
amples from X × {0, 1} for the problem of online ag-
nostic learning DISJ. Suppose there is an efficient
algorithm Alg for the sleeping experts problem with
regret O(p(n)T 1−δ). Then, we claim that Algorithm
DISJ-Learn (Fig. 1) has regret O(p(n)/T δ).

Let the total set of actions be A =
{⊥, O1, Z1, . . . , On, Zn}, ΣA the set of rankings
over A. Let the payoff functions, pt, and the
set of available actions, St, be as defined in Fig.
1. Let σ∗ be the best ranking in hindsight, i.e.
σ∗ = argmaxσ∈ΣA

∑T
t=1 Pσ. Also, let f∗ be the

best disjunction with respect to the sequence s, i.e.
f∗ = argminf∈DISJ errs(f).

Note that ŷt is the prediction made by DISJ-Learn
using the action selected by Alg. At any given round,
the payoff received by Alg is 1−I(ŷt 6= yt) (if Alg picks
⊥, then payoff is 1 − yt and ŷt = 0; otherwise, payoff
is yt and ŷt = 1). Hence, summing over all rounds,

4Actually, agnostically learning conjunctions implies
PAC learning DNF, but because of the duality between
conjunctions and disjunctions, an agnostic learning algo-
rithm for learning disjunctions also implies an algorithm
for earning conjunctions.
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Algorithm. DISJ-Learn (Online Agnostic
Learning)

Input: Alg - the algorithm for sleeping experts
prob.

For t = 1, . . . , T ,

1. Receive example xt. Define St = {⊥} ∪
{Oi | xti = 1} ∪ {Zi | xti = 0}.

2. Give St as the set of available actions to Alg.
Let Alg choose at.

3. If at = ⊥, then set ŷt = 0, else set ŷt = 1.

4. Observe yt. Define pt(⊥) = 1 − yt and
pt(a) = yt for all other actions a ∈ St \ {⊥}.
Return pt as the payoff function to Alg.

Figure 1. Algorithm for online agnostically learning DISJ.

1

T
PAlg = 1− errs(DISJ-Learn)

Now, the proof follows immediately from Lemma 6,
since 1 = minf∈DISJ errs(f) + (1/T ) maxσ∈ΣA Pσ, and
hence from the above equation we get,

errs(DISJ-Learn)− min
f∈DISJ

errs(f) =
1

T

(
max
σ∈ΣA

Pσ − PAlg

)
= O(p(n)/T δ).

Lemma 6. Let s = 〈(xt, yt)〉Tt=1 be any se-
quence of examples from X × {0, 1}. Let A =
{⊥, O1, Z1, . . . , On, Zn}, ΣA be the set of rankings over
A and let St and pt be as defined in Fig. 1.Then

min
f∈DISJ

errs(f) +
1

T
max
σ∈ΣA

Pσ = 1

where Pσ is the payoff achieved by playing the sleeping
experts problem according to ranking strategy σ.

Proof. Let σ be a ranking over the set of actions A =
{⊥, O1, Z1, . . . , On, Zn}. For any two actions a1, a2 ∈
A, define a1 ≺σ a2 to mean that a1 is ranked higher
by σ than a2. For a ranking σ define a disjunction fσ
as:

fσ =
∨

i:Oi≺σ⊥

xi ∨
∨

i:Zi≺σ⊥

x̄i

If for some i, both Oi ≺σ ⊥ and Zi ≺σ ⊥, then fσ ≡ 1.
Note that several permutations may map to the same

disjunction, since only which Oi and Zi are ranked
above ⊥ is important, not their ranking relative to
each other. We show that,

errs(fσ) +
1

T
Pσ = 1 (1)

Consider some vector xt = {0, 1}n and let St ⊆ A
be the corresponding subset of available actions (see
Fig. 1). Then, note that fσ(xt) = 0 if and only if
σ(St) = ⊥. If the true label is yt = 1, fσ suffers error
1−fσ(xt) and σ(St) receives payoff fσ(xt). If the true
label is yt = 0, then fσ suffers error fσ(xt) and σ(St)
receives payoff 1−fσ(xt). Summing over (xt, yt) in the
sequence s, we get (1). But, this also completes the
proof of the lemma, since for every disjunction g there
exists a ranking π such that g = fπ, e.g. the ranking
where the actions corresponding to literals occurring
in g (Oi or Zi depending on whether xi or x̄i appears
in g) are place first, followed by ⊥, followed by the rest
of the actions.

Notes

A longer version of these appeared in the Proceedings
of the conference, Innovations in Theoretical Com-
puter Science (ITCS), 2012. The copyright to that
version are owned by ACM.
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A. On-line to Batch Learning

We prove Theorem 4 using the following lemma.

Lemma 7. Let A be an online agnostic learning al-
gorithm for a concept class C over X with regret
bound O(p(n)/T ζ). We run A for T steps on s =
〈(xt, yt)〉Tt=1. At each step A can be interpreted as a
hypothesis Ht

s which computes ŷt = Ht
s(x

t).

Then we can choose T = O (p(n)/ε)
1/ζ

+
O
(
1/ε4 + log2(1/δ)

)
such that the following holds.

Let D be a distribution over X × {0, 1}. Take a se-
quence s = 〈(xt, yt)〉Tt=1 of T examples from D. Let
〈Ht〉Tt=1 be the hypotheses produced by A running on s.
Then, with probability 1− δ over the choice of s, there
exists t∗ such that errD(Ht∗

s ) ≤ minf∈C errD(f) + ε.

Lemma 7 allows us to convert an online agnostic learn-
ing algorithm into a hypothesis, which we can use for
(batch) agnostic learning.

Proof. Let Qts =
∑
t′≤t err(Ht′

s ). Then, clearly,

〈Qts〉Tt=1 is a submartingale. Moreover, induction on
T gives

Es[errs(A)] = Es

[
1

T

T∑
t=1

I(Ht
s(x

t) 6= yt)

]

= Es

[
1

T

T∑
t=1

errD(Ht
s)

]
= Es

[
QTs
T

]
. (2)

We will now use standard bounds to show that (i) the
expectation (2) is close to (or better than) the optimal
error and that (ii) QTs is close to its expectation with
high probability. It follows that at least one hypoth-
esis Ht∗

s must have error close to (or better than) an
optimal concept.

(i) We have

Es[errs(A)] ≤ Es[min
f∈C

errs(f)] +O(p(n)/T ζ)

≤ min
f∈C

errD(f) +O(p(n)/T ζ). (3)

The first inequality follows from A being an online
agnostic learning algorithm. The second inequal-
ity follows from the fact that Es[minf∈C errs(f)] ≤
minf∈C Es[errs(f)].

(ii) Noting that Qts ≤ Qt+1
s ≤ Qts + 1, Azuma’s in-

equality gives

Pr
s

[
QTs ≥ E[QTs ] + T 1−α] ≤ exp

(
−T 1−2α/2

)
. (4)

Combining (2), (3), and (4), we have

Pr
s

[
1

T

T∑
t=1

errD(Ht
s) ≥ min

f∈C
errD(f) + T−α +O(p(n)/T ζ)

]
≤ exp

(
−T 1−2α/2

)
.

http://doi.acm.org/10.1145/380752.380809
http://doi.acm.org/10.1145/380752.380809
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So we can choose α = 1/4 and

T = max
{

(2/ε)4, O(2p(n)/ε)1/ζ , (2 log(1/δ))2
}

to ensure that, with probability 1− δ,

T
min
t=1

errD(Ht
s) ≤

1

T

T∑
t=1

errD(Ht
s) ≤ min

f∈C
errD(f) + ε.

Proof of Theorem 4. Let A be an online agnostic
learning algorithm for a concept class C over X with
regret bound O(p(n)/T ζ). Fix ε, δ > 0 and a distribu-

tion D over X × {0, 1}. Choose T = O (p(n)/ε)
1/ζ

+
O
(
1/ε4 + log2(1/δ)

)
as in Lemma 7. We sample s =

〈(xt, yt)〉Tt=1 from D and run A on s. Now we have
a sequence of hypotheses 〈Ht〉Tt=1. With probability
1 − δ/2 over the choice of s, at least one hypothesis
Ht∗

s satisfies errD(Ht∗) ≤ minf∈C errD(f) + ε/2. All
that remains is to identify one such hypothesis.

Take T ′ samples s′ = 〈(xt′ , yt′)〉T ′t′=1 from D. By the
Chernoff bound, for any f : X → {0, 1},

Pr
s′

[|errs′(f)− errD(f)| ≥ ε/2] ≤ 2e−T
′ε2/16.

Let T ′ = (16/ε2) log(4T/δ). Then

Pr
s′

[
∀t |errs′(H

t
s)− errD(Ht

s)| < ε/2
]
≥ 1− δ/2.

So we can estimate the accuracy of each hypothesis
and identify a good one. Thus we take T + T ′ sam-
ples and, with probability 1 − δ, we can find a good
hypothesis.


