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Abstract

Contextual bandits, and in general informed
decision making, can be studied in the gen-
eral stochastic/statistical setting by means of
the conditional probability paradigm where
Bayes’ theorem plays a central role. How-
ever, when informed decisions have to be
made considering very large contextual infor-
mation or the information is contained in too
many variables with large history of observa-
tions and the time to take decisions is criti-
cal, the exact calculation of the Bayes’ rule,
to produce the best decision given the avail-
able information, is unaffordable. In this in-
creasingly common setting some derivations
and approximations to conditional probabil-
ity and the Bayes’ rule will progressively gain
greater applicability. In this article, an al-
gorithm able to handle large contextual in-
formation in the form of binary features for
optimal decision making in contextual ban-
dits is presented. The algorithm is analyzed
with respect to its scalability in terms of the
time required to select the best choice and
the time required to update its policy. Last
but not least, we address the exploration and
exploitation issue explaining, despite the in-
computability of an optimal tradeoff, the way
in which the proposed algorithm “naturally”
balances exploration and exploitation by us-
ing common sense.

1. Introduction

Contextual Bandits (a.k.a. bandits with covariate, side
information, associative and associative reinforcement
learning) (Li et al., 2010) or simply the reinforcement
learning case when there are multiple states but rein-
forcement is still immediate (Kaelbling et al., 1996),
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are the natural extension of the multi-armed bandit
problems firstly formalized by Robbins (1952) and ex-
posed in detail by Gittins et al. (1989) and Berry &
Fristedt (1986). Contextual bandits incorporates ad-
ditional information (context) to the decision making
process in the sense that the payoff (reward) obtained
by playing an arm will be (up to some degree if not
totally) dependent of such contextual information (i.e.
a covariate). This kind of problem arises for instance
in news recommendation systems (Li et al., 2010)

Following the terminology of Li et al. (2010) (with
some minor variations): a contextual-bandit algorithm
A proceeds in discrete trials t = 1, 2, 3, . . . T So that in
trial t:

1. The algorithm observes a set A(t) of arms (e.g.,
actions, options, choices) together with a feature
vector x(t) (i.e., the context).

2. Based on observed payoffs from previous trials,
A chooses an arm a(t) ∈ A(t), and receives pay-
off r(t, a) whose expectation depends on both the
context x(t) and the arm a(t).

3. The algorithm then improves its arm-selection
strategy from the tuple: context, arm and reward;
x(t), a(t) and r(t, a) respectively.

So under this rules we must design an algorithm that
maximizes the cumulative reward in the long-run. Tra-
ditionally, in bandit theory this maximization is de-
fined in terms of minimizing the regret or loss with re-
spect to an optimal-policy that always plays the best
arm a∗ at trial t, a∗(t). Hence, a natural measure of
the optimality in terms of regret RA(T ) for the algo-
rithm A is (1):

RA(T )
def
=E

[∑T
t=1 r(t, a

∗)
]
−E

[∑T
t=1 r(t, a)

]
. (1)

Note that by making x(t) and A(t) constants the
problem gets reduced to the classical k-armed ban-
dit in which the paradigm is represented by the so
called “exploration / exploitation tradeoff” (see Hol-
land, 1975, March, 1991 or Kaelbling et al., 1996).
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Table 1. Some examples of equivalent terms to exploration and exploitation used in different fields2.

Area or Discipline exploration-observation vs. exploitation-prediction

Sequential decision making exploration vs. exploitation
Compressed sensing sensor-reading vs. data-prediction
Statistics and Machine Learning memorizing data vs. generalizing
Curve-fitting acquire-points vs. interpolation

Economics risk-taking vs. risk-avoiding
Finance investing vs. saving
Marketing Diversification/Proliferation vs. Concentration strategy
Medicine experimental treatments vs. safety and efficacy

Data-compression store-data vs. space-savings

That is, the algorithm should find the right propor-
tion between these two opposed “intentions”:

1. Exploit the current knowledge of the task to select
the best choice.

2. Explore a non-optimal choice to improve the
knowledge of the task (if it is possible).

So, in general, each trial can be classified in one of
these two categories: an exploration trial or an ex-
ploitation trial. However, in the contextual-bandit
setting this becomes a tradeoff between feature-based-
exploration and feature-based-exploitation, that is, a
tradeoff for every context should be found, and not
only simply along all the trials.

Although as commented by Sutton & Barto 1998, the
soft-max algorithm per se tries to implement a softer
dichotomy (or remove it at all), in strict sense it will
actually end up, at each trial, selecting between the
best choice and suboptimal ones based on a trade-
off defined by the “temperature parameter” of the
Boltzmann-Gibs distribution, i.e., another kind of di-
chotomy after all, however of a different nature, i.e.,
the payoff that you will gain with a safer exploration
will have as a price the information loss of the ex-
ploratory trial.

Let us now define the exploration and exploitation
tradeoff for the total quantity of trials T , the number
of exploratory trials n(ε) and the number of exploita-
tion trials n(ρ) in the following way:

n(ε) = T − n(ρ), (2)

n(ε)/T = 1− n(ρ)/T (3)

ε = 1− ρ. (4)

where ε, ρ are respectively the proportions of explo-
ration and exploitation trials. It is clear that we want

to minimize ε in order to get higher payoffs; however,
what is the minimum value of ε in order to minimize
the regret in the long-run? Table 1 show us a subtle
clue!

Let us define K(ϕ) to be the value of ε that maximizes
the payoff under an ε exploration rate for a sequential
decision problem (ϕ):

K(ϕ) = argmax
ε

(
Eε

[
T∑
t=1

r(t, aε)

])
, (5)

where aε is an exploration or an exploitation action
following ε exploration rate.

Then, the following bad-news hold:

Theorem 1. For any sequential task ϕ whose opti-
mality depends on a tradeoff ε between exploration and
exploitation: the optimal tradeoff ε∗ = K(ϕ) is not a
computable function.

A proof of this theorem can be derived directly from
the incomputability of Kolmogorov’s complexity K(s)
of a string s, as well as from the fact that there is no
possible general lossless compression scheme. Indeed,
this last point tell us that there are tasks in which
the unique possible optimal solution is a pure explo-
ration approach since there will be problems in which
learning (and so prediction) is impossible at all.

Simply, in general, we can’t encode any sequence (s)
of length `(s) in any sequence (ε) of length `(ε) < `(s).
Since any run of a sequential task (ϕ) defines (obvi-
ously) a sequence (sϕ), then we cannot in general find
any shorter sequence that would predict sϕ (for any

2This equivalence list should be taken in a rigorous
mathematical sense. I am very interested in improving
it with new meaningful terms, so, please, updates, sugges-
tions and discussions are very welcome!
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non-trivial sϕ). That is, in general, a shorter sequence
than sϕ that specify an optimal exploration / exploita-
tion tradeoff (i.e., ε∗) that predicts the best possible
playing sequence sϕ (which is simply just one partic-
ular sequence) doesn’t exists. Otherwise, we would be
able to create a universal lossless compression program
by encoding strings as particular playing sequences
determined by shorter strings, such as for instance a
short description of an optimal exploration / exploita-
tion tradeoff.

However, despite these bad-news, in a sense, this is a
full employment theorem for bandits and so it is pos-
sible to find suboptimal exploration rates and explo-
ration / exploitation balancing techniques that signifi-
cantly improve learning. Having said that, the sub-
ject of this article is to present an algorithm that
“naturally” balances exploration and exploitation in
an intuitive and effective way. It should be empha-
sized the importance of finding simple enough and
intuitive explanations of effective exploration / ex-
ploitation techniques for many obvious reasons, for in-
stance, Kuleshov & Precup (2010) show that very sim-
ple techniques such as ε-greedy and soft-max perform
extremely competitive when compared to more elabo-
rate and theoretically-regret-guaranteed-proved tech-
niques which are far from being intuitive for the unini-
tiate despite their simple and elegant key-ideas.

We can study general informed-sequential-decision-
making under the stochastic/statistical framework by
means of the posterior probability paradigm where
Bayes’ theorem plays a central role. However, when
such informed decisions must be computed from very
large contextual information or the information is con-
tained in too many feature variables that may contain
as well a large history of observations and also the time
to take decisions is critical; the exact calculation of
the Bayes’ rule to produce the optimal decision, given
the available information, is computationally unafford-
able.

Nowadays, this is an increasingly common picture and
hence derivations and approximations to conditional
probability and to the Bayes’ rule will gain progres-
sive interest. Here, an algorithm able to efficiently
handle large contextual information in the form of bi-
nary features that naturally balances exploration and
exploitation in contextual bandits is presented.

The algorithm is derived from intuitive observations
that converge to a “linear” approximation to the
Bayes’ rule. The algorithm is analyzed with respect
to its scalability in terms of the time required to select
the best choice and the time required to update its pol-
icy. We address as well, how the proposed algorithm

“naturally” balances exploration and exploitation us-
ing common sense arguments.

2. Algorithm: Linear Bayes’ rule for
contextual bandits

The current paper develops under the frame the “Ex-
ploration and Exploitation 3 Challenge”3. So taking
advantage of this context is a good opportunity to de-
scribe the proposed algorithm in terms of the proposed
challenge, i.e., serving news articles on a web site4.
Here the quantity to be optimized is the overall click
through rate (CTR) of the algorithm, that is, the num-
ber of trials in which the user clicked the recommended
article.

The presentation of the algorithm would be progres-
sive so that the final form will be easily deduced and
understood. The algorithm handles contextual infor-
mation (visitor features) in the form of a vector of
binary features x(t) ∈ {0, 1}∗ provided at each trial t
when also the algorithm is confronted to the selection
of just one article from a set A of possible actions.

The algorithm is divided in three main (sub)routines
or functions:

1. Article recommendation (getActionToPerform):
the algorithm at trial t has to select one article
a(t) to recommend from the list A(t) of possible
actions taking advantage (if possible) of the visi-
tor features x(t) (the context).

2. “Preference-values” computation (p value): upon
request this function computes a preference-value
for an article a given the context x(t) at trial t,
i.e., v = pv(a,x, t). The returned value v can be
used to produce a ranking over the set A(t) in or-
der to select the article with a higher “preference-
value”.

3. Policy update (updatePolicy): once the selected
article is recommended (and if it coincides with
the data, see Li et al., 2010 for evaluation method-
ology), a feedback in the form of a binary number
r ∈ {0, 1} is received and it is used to update the
necessary statistical information required by the
“Preference-values” computation.

3New Challenges for Exploration and Exploitation
workshop at the International Conference on Machine
Learning - June 26–July 1, 2012 - Edinburgh, Scotland.
http://icml.cc/2012/

4https://explochallenge.inria.fr/
the-evaluation-process/

http://icml.cc/2012/
https://explochallenge.inria.fr/the-evaluation-process/
https://explochallenge.inria.fr/the-evaluation-process/
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2.1. Naive approach I

The most naive algorithm is to forget the context and
just select always at trial t the article a(t) which histor-
ically received more clicks r = 1. This algorithm can
be implemented just by having a counter (clicks[a])
for each article a.

a(t) = argmax
a

(
clicks[a]

)
. (6)

However, if different articles are recommended (and
selected) in different proportions, this criterion is un-
fair since an article (a1) recommended (and selected),
say, on 1000 trials having received only 10 clicks will
be preferred to an article (a2) that have been recom-
mended (and selected) only on 10 trials but received
9 clicks. It is of common sense to feel a preference for
the a2 article.

2.2. Context-free: naive approach II

The second approach is to maintain also a counter
(selections[a]) of the quantity of trials in which each
article have been recommended (and selected), so that
a proportion clicks[a]/selections[a] could be calcu-
lated and used as the preference criterion. A key-
advantage of this second (proportion-based) approach
is that it allows to “learn” preferences even with a very
different selection rate for each article, and so it creates
room for balancing exploration and exploitation.

Pa =
clicks[a]

selections[a]
, (7)

a(t) = argmax
a

(
Pa

)
. (8)

This approach, although extremely basic, will perform
well under the assumptions that: (1) the preferences
for the recommended news are universal across all the
users of the web site and (2) that a well enough explo-
ration / exploitation tradeoff is used.

Condition 1 is extremely restrictive and it may only
happen in very specialized contexts in which addi-
tional contextual information is redundant, i.e., a non-
contextual bandit (a simple k-armed bandit), which is
not the current case. Condition 2 can be addressed
in many ways since there are many alternatives and
combinations between them, e.g., ε-greedy, soft-max,
UCB (see Kuleshov & Precup, 2010 for a comparison
of some).

Here we simply use “optimistic initial values” (see Sut-
ton & Barto, 1998, chap. 2.7) to force exploration,

which is a simpler approach to the key-idea of “op-
timism in front of uncertainty” implemented in UCB-
like algorithms. This method can be implemented sim-
ply by assuming, as a staring point, that every article
has been selected and clicked one time, i.e., a propor-
tion of 1:

initial values

{
clicks[a] = 1,
selections[a] = 1,

(9)

for any non-previously selected articles a.

This exploration strategy works in the following way,
at trial 1 it selects the first available article a1 since
all non yet recommended articles have preference 1 at
starting point; and continue to recommend a1 until a
no click event occur in which a case the preference of
a1 will be less than 1. Then at the next trial the next
article with preference 1 is recommended. This cycle
continues until all articles adapt its preference estimate
very close to the true click-rate of every article.

2.2.1. Incremental proportions

Some optimizations can be made in order to avoid the
computation of the proportion (7) at every query. For
this purpose, it is just needed to maintain the cur-
rent proportion P [a] for each article a continuously
updated:

Pa(t+ 1) = Pa(t) +
r(t)− Pa(t)

selections[a] + 1
, (10)

where r(t) = 1 indicates that article a was clicked
at trial t and r(t) = 0 if not. Note that equa-
tions 7 and 10 compute exactly the same value and
that (10) is equivalent to the pursuit methods and the
well known single-step temporal difference equation of
reinforcement learning:

pi(t+ 1) = pi(t) + α ∗ [r − pi(t)], (11)

where α is known as the learning rate parameter and
r is the target to be learned (in this case 0 or 1).

2.3. Contextual bandits: a naive approach III

Let us now see how to incorporate in a useful way the
available contextual information x(t). The first key-
idea is quite simple:

Let us assume that each context x(t) define some char-
acteristic features of a group of users; such as time-
zone, country, language, previous navigation history
and even direct knowledge about the kind of news they
prefer to read. Hence, there would be some contexts
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(user-groups from now on) x(t) that are more likely
to click on certain articles than on others. Here the
assumption is that each binary feature give us infor-
mation of a particular fact and so each feature should
be treated as a positive evidence of a visitor belong-
ing to a certain user-group, i.e., the features are in-
dependent and non-mutually exclusive: a user-group
is defined by a set of features that individual users
may have in common but not that must have in com-
mon, for example, a user-group interested in sports
may have interest in baseball OR football OR tennis
instead of being defined as having interest in baseball
AND football AND tennis. In this case, there will be
preference for a sports related news when there is a
preference for baseball OR football and, more impor-
tantly, this preference will be maximized if the visitor
shows preference for baseball AND football.

Hence, the visitor preference for a particular article
can be measured simply by adding up all the individual
preferences for each feature xi: Pa,i, i.e., a preference
(feature) is specified when the ith element of xi = 1
and so on:

In this case, clicks[a][i] accumulates clicks for article a
when xi(t) = 1 (i.e., the feature is present) and r(t) =
1, while selections[a][i] does the same independent of
the value of r(t):

clicks[a][i] =
∑
t

xi(t)r(t); for a(t) = a (12)

selections[a][i] =
∑
t

xi(t); for a(t) = a. (13)

And hence the incrementally calculated proportion is:

Pa,i(t+ 1) = Pa,i(t) + xi(t)
r(t)− Pa,i(t)

selections[a][i] + 1
. (14)

And the recommended article a(t) at trial t is:

a(t) = argmax
a

( ∑
i clicks[a][i]∑

i selections[a][i]

)
, (15)

∀i s.t. xi(t) 6= 0, or, alternatively:

a(t) = argmax
a

(∑
i

Pa,i(t)

)
, (16)

where Pa,i =

(
clicks[a][i]

selections[a][i]

)
. (17)

∀i s.t. xi(t) 6= 0.

2.4. Contextual bandits: a common sense
approach IV

Now, an extension to the last preference measure is de-
rived from an intuitive observation: instead of basing
the preference in the simple summation of the propor-
tions

∑
i Pa,i(t) between clicks to specific article a by

some user-group and the number of times this article
has been recommended to this user-group; what about
if we find a way of determining which specific features
and so which specific proportion Pa,i(t) should con-
tribute in a mayor degree to the overall sum?

Let us define the overall click-rate for a feature i as:

Pi(t+ 1) = Pi(t) +xi(t)
r(t)− Pi(t)

1 +
∑
a selections[a][i]

. (18)

In this sense, what feature should indicate or predict
in a mayor degree a user-click?

a) A feature i whose click-rate for article a1 is very
high and whose overall click-rate is very low? Or,

b) A feature i whose click-rate for article a1 is high
and whose overall click-rate is very high? Or,

c) A feature i whose click-rate for article a1 is very
low and whose overall click-rate is very high? Or,

d) A feature i whose click-rate for article a1 is very
low and whose overall click-rate is low?

These are some common sense answers to the above
list:

(a) Indicates that almost all clicks related to feature
i are going to article a1.

(b) Indicates that only a relatively small fraction of
clicks related to feature i are going to article a1.

(c) Indicate that almost no click related to feature i
is going to article a1

(d) Indicate that only a relatively small fraction of
clicks related to feature i are going to article a1.

Even more, what role plays the overall click-rate Pa(t)
of article a in this puzzle? I.e, a feature i whose click-
rate for article a is very high and whose overall click-
rate is very low while the overall click-rate Pa(t) of
article a is high or low?

This is also a common sense question: if we assume
Pa(t) is very low; it indicates that, although almost
all clicks related to feature i are going to article a, the
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difference with respect other features can’t be much
significant since as assumed the overall click-rate of
action a is very low, hence Pa(t) is a measure of up to
which level this weighted average preference will differ
from the naive summation, i.e., if probabilities are to
much low then there will be no practical difference
between the two methods.

Hence, to create such a weighted average, the idea is
just weighting each Pa,i(t) by the inverse of the overall
click-rate of feature i and Pa(t):

a(t) = argmax
a

(∑
i

Pa,i(t)

Pi(t)
Pa(t)

)
, (19)

where Pa(t) goes out the summation because it re-
mains constant.

From this, we can make the following equivalences with
the standard probability theory notation:

P (xi|a) = Pa,i(t) (20)

P (xi) = Pi(t), (21)

P (a) = Pa(t), (22)

P (a| ∪ xi) =
∑
i

(
P (xi|a)

P (xi)

)
P (a) (23)

So the following three equations are equivalent:

a(t) = argmax
a

(∑
i

Pa,i(t)

Pi(t)
Pa(t)

)
, (24)

a(t) = argmax
a

(∑
i

P (xi|a)

P (xi)
P (a)

)
, (25)

a(t) = argmax
a

(P (a| ∪ xi)) . (26)

And therefore the applied preference selection is a
linear approximation to the Bayes’ rule, i.e., for the
union of the informative events. Finally a slight com-
mon sense variation is to include an additional term
P (∩xi|a) defined as:

P (∩xi|a) =
∏
i

P (xi|a), (27)

that expresses the joint probability of all posteriors
P (xi|a) assuming independence. Hence the final rec-
ommendations of the presented algorithm are done in
the following way:

a(t) = argmax
a

(
P (a| ∪ xi)P (∩xi|a)

)
. (28)

2.5. Exploration / Exploitation: Does exactly
what it says on the tin

How does this algorithm explore? How does it bal-
ances exploration and exploitation? In previous sec-
tions it was described how optimistic initial values in-
duce a natural exploration that converge to near op-
timal click-rates. However, by applying the final al-
gorithm (28) things are slightly different. So, again,
common sense can be applied to analyze how a natu-
ral tradeoff occurs.

Let us suppose we want to create a special exploration
procedure that tries to gain as much information as
possible from every exploratory trial. The following is
a powerful but quite simple idea for what could be a
good exploratory trial: recommend an article a such
that the following concurrent conditions hold:

1. Article has been little selected by the current user-
group x(t).

2. Article has near the maximum selection rate over
all the other user-groups.

3. Despite it’s low inner-group selection rate it shows
some clicks for the current user-group.

4. The article has a high prior, i.e., P (a) is high.

5. The article has received little clicks over all the
user-groups.

That is, an extremely informative trial. For instance,
any unrecommended article or a new one just arriving
on the web site (a truly news article) will have maxi-
mal priority to be explored by using the above list of
desired conditions. However, to understand the com-
plete picture, let us observe the following equations
which are equivalent to (25):

a(t) = argmax
a

(∑
i

Cai/Sai
Ci/Si

P (a)

)
(29)

= argmax
a

(∑
i

CaiSi
CiSai

P (a)

)
, (30)

where Cai = clicks[a][i], Sai = selections[a][i], Ci =∑
a clicks[a][i] and Si =

∑
a selections[a][i].

We can see that, indeed, these equations maximize
all the conditions above, e.g. the term Si as well as
Cai and P (a) are directly proportional to the selec-
tion preference (conditions 2,3,4), however Ci and Sai
are inversely proportional to the selection preference
(conditions 1 and 5).
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Figure 1. Performance comparison of the explained methods

Therefore, in the presented algorithm converge the two
opposed “intentions” in just one selection rule; it ex-
plores and exploits depending on the particular con-
texts and the particular information associated to that
context in a specific time. Indeed, all the attempts (by
now) to combine this algorithm with other complimen-
tary exploration / exploitation procedures, such as ε-
greedy or soft-max, have failed to beat the selection
rule (28).

As a final remark, it is very important to mention that
the algorithm scales linear in the number of binary fea-
tures and also scales linear in the number of articles
to choose from. These are definitely the mayor advan-
tages (together with its predictive performance) of the
presented approach to contextual bandits with large
binary features context.

Finally, figure 1 shows the different performances ob-
tained for the naive II, naive III and Linear Bayes ap-
proaches implemented so far.
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